Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.01.10.523518

RESUMO

Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 mM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.


Assuntos
COVID-19 , Viroses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA